Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ПРЕДПРОФЕССИОНАЛЬНЫЙ ЭКЗАМЕН для учащихся инженерных классов (11 класс) города Москвы

Методические рекомендации по решению задач теоретической части предпрофессионального экзамена

ИНФОРМАТИКА

Авторы: Калмыков Ю.В., старший преподаватель кафедры «Основы математики и информатики» СУНЦ МГТУ им. Н.Э. Баумана, председатель методического объединения учителей информатики ГБОУ Лицей №1580; Локтев Д.А., к.т.н., доцент кафедры «Информационные системы и телекоммуникации» МГТУ им. Н.Э. Баумана; Попов В.С., старший преподаватель «Информационные системы и телекоммуникации» МГТУ им. Н.Э. Баумана; Митрофанов М.С., ассистент кафедры «Основы математики и информатики» СУНЦ МГТУ им. Н.Э. Баумана

Москва 2017

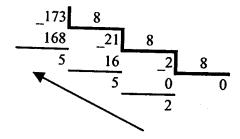
Рассмотрим темы, которые необходимо знать выпускникам.

Системы счисления

Необходимо уметь переводить числа из одной системы счисления в другую.

Правило перевода из произвольной системы счисления в десятичную:

Для того, чтобы перевести число из произвольной системы счисления в десятичную систему счисления, нужно сложить все произведения каждой цифры числа на основание системы счисления в степени соответствующего разряда.


Пример
$$1101_2 = 1 \cdot 2^0 + 0 \cdot 2^1 + 1 \cdot 2^2 + 1 \cdot 2^3 = 1 + 0 + 4 + 8 = 13_{10}$$

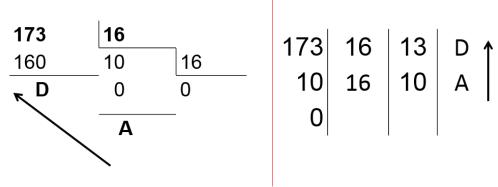
<u>Правило перевода целого числа из десятичной системы счисления в</u> произвольную:

- 1. Последовательно делим данное число и получаемые целые частные (выраженные цифрами десятичной системы) на основание новой системы счисления до тех пор, пока частное не станет равным нулю.
- 2. Полученные остатки, являющиеся цифрами числа в новой системе счисления, выражаем цифрами алфавита этой системы.
- 3. Составляем число в новой системе счисления, записав полученные остатки в обратной последовательности (т.е. начиная с последнего остатка).

Пример 1.

Перевести число 173₁₀ в восьмеричную систему счисления.

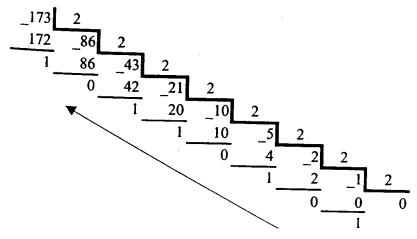
Ответ: 2558


Можно записать по-другому.

173	8	5	1
21	8	5	
2	8	2	
0			

Ответ: 2558

Пример 2.


Перевести число 173₁₀ в шестнадцатеричную систему счисления

Ответ: AD_{16}

Пример 3.

Перевести число 173₁₀ в двоичную систему счисления.

Ответ: 10101101₂

При переводе в двоичную систему относительно больших чисел, количество операций делений становится большим, а, следовательно, велика вероятность ошибки и время выполнения значительно увеличивается. Поэтому есть необходимость, при возможности, облегчить ситуацию.

Для перевода числа из десятичной системы счисления в двоичную существует ещё один способ.

При этом способе надо десятичное число представить суммой чисел, которые являются степенями двойки. Если число есть в сумме, то на место соответствующего разряда в двоичной записи поставить 1, иначе поставить 0.

Однако, надо выучить степени двойки.

$$2^0 = 1$$

$$2^1 = 2$$

$$2^2 = 4$$

$$2^3 = 8$$

$$2^4 = 16$$

$$2^5 = 32$$

$$2^6 = 64$$

$$2^7 = 128$$

$$2^8 = 256$$
 $2^9 = 512$
 $2^{10} = 1024$

Пример 4.

Перевести число 173₁₀ в двоичную систему счисления. Строим таблицу со степенями двойки

128	64	32	16	8	4	2	1
2^7	2^{6}	25	24	23	22	21	20

Ближайшее число (степень 2) к 173 – это 128, значит 173=128+45 Ставим в таблицу в столбце 128 единичку

128	64	32	16	8	4	2	1
27	26	25	24	23	22	21	20
1							

Число 45 меньше 64, значит в этом столбце будет 0, но больше 32, значит в столбце 32 будет 1

128	64	32	16	8	4	2	1
27	26	25	24	23	2^2	21	2^{0}
1	0	1					

Продолжая тем же образом, получим

128	64	32	16	8	4	2	1
27	26	25	24	23	22	21	20
1	0	1	0	1	1	0	1

$$173_{10} = 128 + 45 = 128 + 32 + 13 = 128 + 32 + 8 + 4 + 1 = 10101101_2$$

Таким образом, данный способ позволяет существенно сократить время выполнения задания и снизить вероятность ошибки, но требует запоминания степеней двойки. Если же запомнить и числа от 1 до 15 в двоичной системе, то время

ещё больше сократится. Так, в последнем примере, можно было при получении остатка 13 просто записать его двоичный вид сразу 1101.

Ещё проще переводить в двоичную систему числа, близкие к степеням 2.

Пример 5.

Перевести число 517 в двоичную систему счисления

Решение.

```
517=512+5

512=2^9 это 1 и девять нулей

512=2^9=1000000000_2

5=101_2
```

Соответственно, при сложении единички добавятся в нулевой и второй разряд Получим 100000101_2

То есть, если число несколько больше степени 2, то его удобно представить, как сумму степени двойки (а это 1 и соответствующее число 0) и остатка, который мы можем сразу записать, если помним числа от 1 до 15 в двоичном виде.

Если число меньше степени двойки, то действуем почти так же

Пример 6.

Перевести число 507 в двоичную систему счисления

Решение.

```
507=512-1-4

512=2^9=10000000002

512-1=2^9-1=1111111111

4=100_2
```

Соответственно, при вычитании единичка удалится из в второго разряда Получим 111111011_2

Как видно из примера, если число меньше степени двойки, то удобно взять в качестве исходного число на 1 меньше, чем степень двойки. Тогда это число будет состоять только из соответствующего числа единиц, из которого будет очень удобно вычесть остаток.

Родственные системы счисления

Системы счисления называют родственными, когда их основания являются степенями одного числа. Например, 2, 4, 8, 16.

В этом случае удобно пользоваться следующей таблицей:

10	2	4	8	16
0	0000	000	00	0
1	0001	001	01	1
2	0010	002	02	2
3	0011	003	03	3
4	0100	010	04	4
5	0101	011	05	5
6	0110	012	06	6
7	0111	013	07	7
8	1000	020	10	8
9	1001	021	11	9
10	1010	022	12	Α
11	1011	023	13	В
12	1100	030	14	С
13	1101	031	15	D
14	1110	032	16	Е
15	1111	033	17	F

Перевод из двоичной системы в родственную и наоборот очень прост.

Для перевода из двоичной системы следует разбить число на двойки (4-я), тройки (8-я) или четвёрки чисел (16-я), а затем подменить на соответствующие значения (из таблицы).

```
\begin{aligned} &110100101_2 = 01.10.10.01.01 = 12211_4 \\ &110100101_2 = 110.100.101 = 645_8 \\ &110100101_2 = 0001.1010.0101 = 1A5_{16} \end{aligned}
```

В этом случае, так же полезно помнить указанную таблицу.

Переход из одной родственной системы в другую осуществляется транзитом через наименьшее основание, в нашем случае через двойку.

Понятно, что все эти рассуждения применимы и для систем счисления

3, 9, 21, 81 5, 25, 125 и т.п.

Пример из демонстрационного варианта

Играя в интерактивный квест, команда должна была открыть сейф с цифровым кодовым замком. Найдя подсказки, команда выяснила, что кодом является минимальное нечётное четырёхзначное число в девятеричной системе счисления, троичная запись которого содержит одну двойку и три значащих нуля. Команда справилась с заданием. Какое значение кода она получила? Ответ приведите в троичной и девятеричной системах счисления.

Очевидно, что здесь родственные системы 3-я и 9-я.

Так как число четырёхзначное в девятеричной системе счисления, то в троичное его можно представить в виде ab cd ef gh, где a, b, c, d, e, f, g, h — цифры троичного представления числа.

Так как число должно быть минимальным, то нули должны располагаться как можно левее, а двойка правее (но не забыть, что число - нечётное).

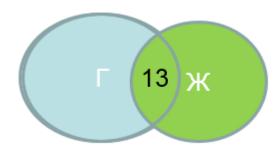
1 00 01 123

Соответственно, если необходимо найти максимальное число, то наоборот минимальные цифры смещаем вправо, а максимальные – влево

Признаки чётности в различных системах счисления:

- В системах счисления с **чётным** основанием чётными являются числа, **последняя цифра** которых делится на 2 без остатка;
- В системах счисления с **нечётным** основанием чётными являются числа, **сумма цифр** которых делится на 2 без остатка.

Задачи на множества. Круги Эйлера

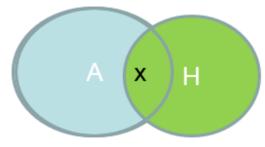

Пример 1.

Каждая семья из нашего дома выписывает газету или журнал, или и то и другое. 27 семей выписывают журналы, 75 семей — газеты. Лишь 13 семей и журналы, и газеты.

Сколько семей в доме?

Решение.

При решении данной задачи удобно воспользоваться кругами Эйлера


 Γ =75, Ж=27 Только газеты = 75-13=62 Только журналы = 27-13=14 Всего 62+14+13=89 семей

Пример 2 (из демонстрационного варианта)

Поток из 100 студентов сдавал экзамены. 85 студентов сдали английский язык, 73 студента сдали немецкий язык, 10 студентов не сдали ни одного экзамена. Какое количество студентов сдало экзамены и по английскому, и по немецкому языкам?

Решение.

Похоже на предыдущую задачу

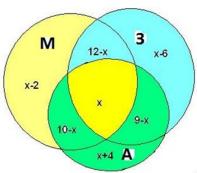
A=85, H=27.

Так как 10 студентов не сдавало, то всего сдавало 100-10=90

Только английский = 85-х

Только немецкий = 73-х

Bcero (85-x)+(73-x)+x=90 => 158-x=90


Ответ: х=68.

Пример 3.

В классе 30 человек. 20 из них коллекционируют марки, 15 — значки, 23 — автографы, 10 — и марки, и автографы, 12 — и марки, и значки, 9 — и автографы, и значки. Сколько человек коллекционируют и марки, и значки, и автографы?

Решение.

Для решения воспользуемся кругами Эйлера:

Пусть х человек коллекционируют и марки, и значки, и автографы. Тогда коллекционируют только марки и автографы — (10-x) человек, только значки и автографы — (9-x) человек,

только марки и значки — (12 - х) человек.

Найдём, сколько человек коллекционируют только марки:

$$20 - (12 - x) - (10 - x) - x = x - 2$$

Аналогично получаем: x - 6 — только значки и x + 4 — только автографы, так как всего 30 человек, составляем уравнение:

$$X + (12 - x) + (9 - x) + (10 - x) + (x + 4) + (x - 2) + (x - 6) = 30.$$

Отсюда x = 3.

Вероятностный подход к определению количества информации

За единицу измерения информации принимается уменьшение неопределённости знаний человека в 2 раза.

Эта единица называется битом и является минимальной единицей информации. Существует формула, которая связывает между собой количество возможных событий и количество информации.

 $N=2^{I}$, где N — количество возможных вариантов, I — количество информации. Если из этой формулы выразить количество информации, то получится $I=log_{2}N$.

Не равновероятные события

В жизни же мы сталкиваемся не только с равновероятными событиями, но и событиями, которые имеют разную вероятность реализации.

Например:

Если в мешке лежат 20 белых шаров и 5 черных, то вероятность достать чёрный шар меньше, чем вероятность вытаскивания белого.

Как вычислить количество информации в сообщении о таком событии? Для этого необходимо использовать следующую формулу:

$$I = \log_2 \frac{1}{p} = -\log_2 p$$
 , где I — количество информации, р — вероятность события.

Пример 1.

В корзине лежат 8 мячей разного цвета (красный, синий, желтый, зеленый, оранжевый, фиолетовый, белый, коричневый). Какое количество информации несет в себе сообщение о том, что из корзины будет вынут мяч красного цвета?

Решение.

Так как возможности вынуть мяч каждого из возможных цветов равновероятны, то для определения количества информации, содержащегося в сообщении о выпадении мяча красного цвета, воспользуемся формулой $I = log_2N$.

Имеем $I = log_2 8 = 3$ бита.

Ответ: 3 бита.

Пример 2.

В корзине лежат 8 черных шаров и 24 белых. Сколько информации несёт сообщение о том, что достали чёрный шар?

Решение.

8+24=32 – общее количество шаров в корзине;

8/32 = 0.25 — вероятность того, что из корзины достали чёрный шар;

$$I= - \log_2 0.25 = - (-2) = 2$$
 бита.

Ответ: 2 бита.

Информационная энтропия

В кибернетике используется понятие информационной энтропии, которая определяется формулой

$$H = -\sum_{i} p_{i} \log_{2} \hat{p}_{i}$$

где H - информационная энтропия, p_i - вероятность каждого из возможных исходов.

Пример из демонстрационного варианта

В корзине лежат 32 клубка шерсти, из них 16 красных, 8 синих и 8 зелёных. Какова информационная энтропия сообщения о том, что случайно выбран 1 клубок? Какова вероятность того, что клубок оказался синим? Сколько бит информации несёт сообщение о том, что клубок синий?

Решение.

Вероятность 8/32=1/4=0,25

Кол-во информации

Информационная энтропия

$$16/32*\log_2(16/32)+8/32*\log_2(8/32)+8/32*\log_2(8/32)=1/2+1/2+1/2=1,5$$

Задачи на перемещение

Пример из демонстрационного варианта

Студент написал программу, в которой исполнитель **Прыгун** может совершать прыжки двух типов. Так, стартовав из точки A (1; 6; 3) прыжком первого типа, **Прыгун** попадает в точку B (1; 2; - 3), а из точки B прыжком второго типа попадает в точку C (1; 0; - 7). Найдите модуль перемещения **Прыгуна**, последовательно совершившего два прыжка первого типа и прыжок, противоположный прыжку второго типа.

Решение.

A (1; 6; 3)

B(1; 2; -3)

C(1; 0; -7)

Вычисляем смещение по каждой оси.

Прыжок первого типа (0;-4;-6)

Прыжок второго типа (0;-2;-4)

После двух прыжков первого типа и одного обратного прыжку второго получаем

$$(0; -4*2 - (-2); -6*2 - (-4)) = (0; -6; -8)$$

Квадрат перемещения = $6^2+8^2=36+64=100$

Отсюда – перемещение равно 10

Прочие задачи

Пример из демонстрационного варианта

Космический зонд выведен на околоземную орбиту. Он регистрирует количество высокоэнергетических протонов В околоземном пространстве, путём добавления попадающих на его датчики, В память сумматора зарегистрированного количества протонов каждую секунду. Каждый час, начиная с 01.00, передаёт это количество на Землю в Центр Управления Полётом. За 1 января 2017 года ЦУП от спутника получил следующий набор данных: 20512, 20612, 20662, 20692, 20699, 20753, 20756, 20759, 20766, 20777, 20777, 20781, 20789, 20790, 20811, 20812, 20819, 20821, 20832, 20835, 20842, 20849, 20853, 20891.

Сколько частиц зарегистрировал спутник за период времени с 6 утра до 6 вечера включительно 1 января 2017?

Решение.

На начало 6-го часа было зарегистрировано 20753 частиц, на конец 18-го часа, то есть в 19 часов – 20832 частиц

20832-20753=79 частиц

Ответ: 79.